Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effect of zinc and the role of p53 in copper‐induced cellular stress responses

Identifieur interne : 001109 ( Main/Exploration ); précédent : 001108; suivant : 001110

The effect of zinc and the role of p53 in copper‐induced cellular stress responses

Auteurs : Alessia Formigari [Italie] ; Elisa Gregianin [Italie] ; Paola Irato [Italie]

Source :

RBID : ISTEX:B939401BC477CE11EE27E4F8D7DA994DAEC5F8DB

English descriptors

Abstract

Metals can directly or indirectly cause an increase in reactive oxygen species (ROS) accumulation in cells, and this may result in programmed cell death. A number of previous studies have shown that zinc (Zn) modulates mitogenic activity via several signalling pathways, such as AKT, mitogen‐activated protein kinase (MAPK), nuclear factor‐kappa B (NF ‐κB), AP‐1 and p53. The exact role that Zn plays in the regulation of apoptosis remains ambiguous. Intracellular free Zn modulates p53 activity and stability, and excess Zn alters the p53 protein structure and down‐regulates p53's binding to DNA. Copper (Cu) accumulation causes apoptosis that seems to be mediated by DNA damage and subsequent p53 activation. Cu can also displace Zn from its normal binding site on p53, resulting in abnormal protein folding and disruption of p53 function. In spite of the induction of the tumour suppressor p53, hepatic Cu accumulation significantly increases the risk of cancerous neoplasm both in humans and rats, suggesting that p53 function may be impaired in these cells. It is generally understood that imbalances in Cu and Zn levels may lead to a higher prevalence of p53 mutations. An increased number of p53 mutations have been found in liver samples from Wilson's disease (WD) patients. High levels of the p53 mutation most probably contribute to the pathogenesis of cancer in individuals with WD, but the cause and effect are not clear. The protein p53 also plays a crucial role in the transcriptional regulation of metallothionein, which indicates a novel regulatory role for p53. This review discusses the central role of p53 and the redox‐inert metal Zn in the cellular stress responses induced by the redox active biometal Cu. Copyright © 2013 John Wiley & Sons, Ltd.
Metals can cause an increase in reactive oxygen species (ROS) accumulation resulting in programmed cell death. The exact role that zinc (Zn) plays in the regulation of apoptosis remains ambiguous. Intracellular free Zn modulates p53 activity and stability, excess Zn alters p53 protein structure and down‐regulates binding to DNA. Copper (Cu) accumulation causes apoptosis that is mediated by DNA damage and subsequent p53 activation. This review discusses a central role of Zn and of p53 in cellular stress responses induced by redox active biometal Cu.

Url:
DOI: 10.1002/jat.2854


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The effect of zinc and the role of p53 in copper‐induced cellular stress responses</title>
<author>
<name sortKey="Formigari, Alessia" sort="Formigari, Alessia" uniqKey="Formigari A" first="Alessia" last="Formigari">Alessia Formigari</name>
</author>
<author>
<name sortKey="Gregianin, Elisa" sort="Gregianin, Elisa" uniqKey="Gregianin E" first="Elisa" last="Gregianin">Elisa Gregianin</name>
</author>
<author>
<name sortKey="Irato, Paola" sort="Irato, Paola" uniqKey="Irato P" first="Paola" last="Irato">Paola Irato</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B939401BC477CE11EE27E4F8D7DA994DAEC5F8DB</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/jat.2854</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-R5LDT984-N/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001110</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001110</idno>
<idno type="wicri:Area/Istex/Curation">001059</idno>
<idno type="wicri:Area/Istex/Checkpoint">000260</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000260</idno>
<idno type="wicri:doubleKey">0260-437X:2013:Formigari A:the:effect:of</idno>
<idno type="wicri:Area/Main/Merge">001110</idno>
<idno type="wicri:Area/Main/Curation">001109</idno>
<idno type="wicri:Area/Main/Exploration">001109</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">The effect of zinc and the role of p53 in copper‐induced cellular stress responses</title>
<author>
<name sortKey="Formigari, Alessia" sort="Formigari, Alessia" uniqKey="Formigari A" first="Alessia" last="Formigari">Alessia Formigari</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova</wicri:regionArea>
<wicri:noRegion>Padova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gregianin, Elisa" sort="Gregianin, Elisa" uniqKey="Gregianin E" first="Elisa" last="Gregianin">Elisa Gregianin</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova</wicri:regionArea>
<wicri:noRegion>Padova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Irato, Paola" sort="Irato, Paola" uniqKey="Irato P" first="Paola" last="Irato">Paola Irato</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova</wicri:regionArea>
<wicri:noRegion>Padova</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Italie</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Applied Toxicology</title>
<title level="j" type="alt">JOURNAL OF APPLIED TOXICOLOGY</title>
<idno type="ISSN">0260-437X</idno>
<idno type="eISSN">1099-1263</idno>
<imprint>
<biblScope unit="vol">33</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="527">527</biblScope>
<biblScope unit="page" to="536">536</biblScope>
<biblScope unit="page-count">10</biblScope>
<date type="published" when="2013-07">2013-07</date>
</imprint>
<idno type="ISSN">0260-437X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0260-437X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Abnormal protein</term>
<term>Accumulation causes apoptosis</term>
<term>Activation</term>
<term>Amino acids</term>
<term>Amyloid</term>
<term>Amyloid beta</term>
<term>Amyloid plaques</term>
<term>Antioxidant</term>
<term>Antioxidant properties</term>
<term>Apoptosis</term>
<term>Apoptotic</term>
<term>Apoptotic cell death</term>
<term>Apoptotic events</term>
<term>Apoptotic pathway</term>
<term>Appl</term>
<term>Biochem</term>
<term>Biol</term>
<term>Breast cancer</term>
<term>Cancer cells</term>
<term>Cancer patients</term>
<term>Cell cycle</term>
<term>Cell death</term>
<term>Cell growth</term>
<term>Cell proliferation</term>
<term>Cellular</term>
<term>Cellular homeostasis</term>
<term>Cellular responses</term>
<term>Cellular stress responses</term>
<term>Cellular stressors</term>
<term>Cellular zinc</term>
<term>Central role</term>
<term>Chem</term>
<term>Cherian</term>
<term>Chronic effects</term>
<term>Copyright</term>
<term>Crucial role</term>
<term>Cytokine</term>
<term>Cytokine production</term>
<term>Different concentrations</term>
<term>Direct interaction</term>
<term>Elderly patients</term>
<term>Electron transport chain</term>
<term>Epithelial breast cancer cells</term>
<term>Epithelial cells</term>
<term>Essential role</term>
<term>Exact role</term>
<term>Focal adhesion kinase</term>
<term>Formigari</term>
<term>Free radic</term>
<term>Free radicals</term>
<term>Gene expression</term>
<term>Hainaut</term>
<term>High concentrations</term>
<term>High levels</term>
<term>Hydrogen peroxide</term>
<term>Hydroxyl radicals</term>
<term>Important functions</term>
<term>Important role</term>
<term>Inhibitory effect</term>
<term>Intracellular</term>
<term>Intracellular production</term>
<term>John wiley sons</term>
<term>Jomova</term>
<term>Lipid peroxidation</term>
<term>Liver samples</term>
<term>Lung cell</term>
<term>Macular degeneration</term>
<term>Major role</term>
<term>Mammalian cells</term>
<term>Metal ions</term>
<term>Metallothionein</term>
<term>Missense mutations</term>
<term>Mitochondrial</term>
<term>Mitochondrial apoptogenesis</term>
<term>Mitochondrial depolarization</term>
<term>Mitochondrial membrane</term>
<term>Modulates</term>
<term>Molecular mechanisms</term>
<term>Mutation</term>
<term>Mutation load</term>
<term>Neuronal</term>
<term>Neuronal death</term>
<term>Nitric oxide</term>
<term>Normal binding site</term>
<term>Normal functions</term>
<term>Nuclear translocation</term>
<term>Nutr</term>
<term>Ostrakhovitch</term>
<term>Other forms</term>
<term>Other metals</term>
<term>Oxidation therapy</term>
<term>Oxidative</term>
<term>Oxidative stress</term>
<term>Paola irato</term>
<term>Parp proteolysis</term>
<term>Pathway</term>
<term>Peritoneal mesothelial cells</term>
<term>Physiol</term>
<term>Poly polymerase</term>
<term>Potent inhibitor</term>
<term>Prasad</term>
<term>Previous reports</term>
<term>Previous studies</term>
<term>Protective role</term>
<term>Protein kinase</term>
<term>Protein structure</term>
<term>Reactive</term>
<term>Reactive oxygen species</term>
<term>Redox</term>
<term>Redox cycling</term>
<term>Schematic diagram</term>
<term>Signal transduction pathways</term>
<term>Solid tumours</term>
<term>Suppressor</term>
<term>Toxic effects</term>
<term>Toxicity</term>
<term>Toxicol</term>
<term>Trace elem</term>
<term>Trace elements</term>
<term>Traf pathway</term>
<term>Transcription</term>
<term>Transcription factor</term>
<term>Transcription factors</term>
<term>Transcriptional activity</term>
<term>Transcriptional regulation</term>
<term>Transgenic mice</term>
<term>Tumor cells</term>
<term>Tumor suppressor protein</term>
<term>Tumour</term>
<term>Tumour cells</term>
<term>Tumour suppressor</term>
<term>Tumour suppressor protein</term>
<term>Valko</term>
<term>Zinc</term>
<term>Zinc depletion</term>
<term>Zinc functions</term>
<term>Zinc modulates mitogenic activity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Metals can directly or indirectly cause an increase in reactive oxygen species (ROS) accumulation in cells, and this may result in programmed cell death. A number of previous studies have shown that zinc (Zn) modulates mitogenic activity via several signalling pathways, such as AKT, mitogen‐activated protein kinase (MAPK), nuclear factor‐kappa B (NF ‐κB), AP‐1 and p53. The exact role that Zn plays in the regulation of apoptosis remains ambiguous. Intracellular free Zn modulates p53 activity and stability, and excess Zn alters the p53 protein structure and down‐regulates p53's binding to DNA. Copper (Cu) accumulation causes apoptosis that seems to be mediated by DNA damage and subsequent p53 activation. Cu can also displace Zn from its normal binding site on p53, resulting in abnormal protein folding and disruption of p53 function. In spite of the induction of the tumour suppressor p53, hepatic Cu accumulation significantly increases the risk of cancerous neoplasm both in humans and rats, suggesting that p53 function may be impaired in these cells. It is generally understood that imbalances in Cu and Zn levels may lead to a higher prevalence of p53 mutations. An increased number of p53 mutations have been found in liver samples from Wilson's disease (WD) patients. High levels of the p53 mutation most probably contribute to the pathogenesis of cancer in individuals with WD, but the cause and effect are not clear. The protein p53 also plays a crucial role in the transcriptional regulation of metallothionein, which indicates a novel regulatory role for p53. This review discusses the central role of p53 and the redox‐inert metal Zn in the cellular stress responses induced by the redox active biometal Cu. Copyright © 2013 John Wiley & Sons, Ltd.</div>
<div type="abstract">Metals can cause an increase in reactive oxygen species (ROS) accumulation resulting in programmed cell death. The exact role that zinc (Zn) plays in the regulation of apoptosis remains ambiguous. Intracellular free Zn modulates p53 activity and stability, excess Zn alters p53 protein structure and down‐regulates binding to DNA. Copper (Cu) accumulation causes apoptosis that is mediated by DNA damage and subsequent p53 activation. This review discusses a central role of Zn and of p53 in cellular stress responses induced by redox active biometal Cu.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<country name="Italie">
<noRegion>
<name sortKey="Formigari, Alessia" sort="Formigari, Alessia" uniqKey="Formigari A" first="Alessia" last="Formigari">Alessia Formigari</name>
</noRegion>
<name sortKey="Gregianin, Elisa" sort="Gregianin, Elisa" uniqKey="Gregianin E" first="Elisa" last="Gregianin">Elisa Gregianin</name>
<name sortKey="Irato, Paola" sort="Irato, Paola" uniqKey="Irato P" first="Paola" last="Irato">Paola Irato</name>
<name sortKey="Irato, Paola" sort="Irato, Paola" uniqKey="Irato P" first="Paola" last="Irato">Paola Irato</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001109 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001109 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:B939401BC477CE11EE27E4F8D7DA994DAEC5F8DB
   |texte=   The effect of zinc and the role of p53 in copper‐induced cellular stress responses
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021